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In practice, there are two methods of measuring the integrated intensity of a diffraction peak. Both can be 
optimized, that is, performed in such a way as to give the intensity, with a given accuracy, during a minimum 
measuring time. These optimizing processes are described along with a third, so-called absolute optimum, 
method. The three methods are compared and their relative merits discussed. 

551 

1. Introduction 

There are basically two working modes of measuring 
the integrated intensity of a diffraction peak. In both 
the measurements are made step-by-step, with the 
points at equal intervals in scattering angle in both the 
peak and background ranges of the considered reflec- 
tion. At each point in one mode the number of counts 
during some constant time is measured; in the other, 
the time necessary for a constant number of counts to 
be reached is measured. Both are easy to perform, as 
modern diffractometers incorporate these two working 
modes. 

The two methods are susceptible to optimization. 
That is, with the integrated intensity required to have a 
given accuracy (taken as its standard deviation), there 
will be a definite choice of the times or counts in the 
peak and background ranges, which make the total 
measuring time a minimum. 

It will be seen that the total measuring time has an 
absolute minimum which corresponds to a third 
method, consisting in using at each point a different, 
suitable time. 

Of these three optimizing processes only the 
constant-time method has been discussed in the literature 
(Szab6, 1964; Arndt & Willis, 1966). The formulae for 
the optimum total time and the counts or times to be 
used at each point will be derived here for the other two 
methods. However, in order to give uniformity to the 
discussion, first the derivation of the formulae cor- 
responding to the constant-time method will be 
repeated. 

Finally, by comparing the different formulae, the 
relative merits of the three methods will be discussed. 

* On leave of absence from E6tv6s Lor/md University, Budapest, 
Hungary. 

2. Optimization 

The integrated intensity may be expressed as 

I= f YdO-- f YdO, (I) 
p b 

where Y is the intensity in counts s -I, and the integrals 
are to be taken over the peak (p) or the background (b) 
range of the scattering angle 0. Obviously, it is assumed 
here that these two ranges have the same width L. In 
the following the differential symbol dO will be dropped 
from the integrals, to simplify writing. 

In fact, the integrals in (1) should be replaced by 
sums over the measured points. For simplicity, the 
same, sufficiently large, number n of points will be 
assumed for the two ranges. This does not affect the 
total times, as may be easily seen. Rearranging the 
sums, we have 

L L L L 
I ~ n  ~o n =  - Y-- - Y=~-~TYt--~--~ It, (2) 

where t is the measuring time, and It the number of 
counts at each point. Assuming a Poisson distribution 
in counting statistics and neglecting the error in t, we 
obtain for its standard deviation a t (Beers, 1957): 

L 2 L 2 L 2 Y L 2 Y 
a]=~p-~  Yt+ ~ - ~  Yt= ~--~t  + ~--~t" (3) 

2.1. Constant time (c.t.) method 
In this method t, the time per measurement, is tp in 

the peak range and t b in the background range. The tp 
and t b are constants within their respective ranges, thus 
they can be removed from the summations. We want to 
find the minimum of the total time 

Tea . = ntp + nt  b, (4)  
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considered as function of tp and t 0, with the constraint 
expressed by (3), which in this case reads: 

1 L 2 1 L 2 
a;=--~p ~--~-i Y+--~o ~--~-i Y. (3a) 

Applying the usual (Lagrange multiplier) method of 
finding the minimum, and changing the sums back to 
integrals, we arrive at 

tp-- a2 n2 Y+ Y 

1 L  

n ~/o I~lp 

The formula for t 0 is obtained by interchanging the sub- 
scripts p and b in (5). For the optimum total time we 
thus have 

L 
Tc't '= a--~ ( ~ +  ~ ) 2 .  (6) 

2.2 Constant count (c.c.) method 
Here we use the numbers of counts Np and N b, each 

constant within its respective range. The measuring 
time at each point is 

t =  N° or Nb. (7) 
Y Y 

Substituting this in the constraint (3), and finding the 
minimum of the total time 

considered as a function of Np and Nb, we arrive at 

Np-- a]n 

1 i (9) 

The formula for Nb is obtained by interchanging here 
the subscripts p and b. For the optimum total time we 
obtain 

1 2J~ + fb,~J~ 
• " o w, 

(10) 

2.3. Absolute optimum (abs.) method 
Now we take all the times t as independent variables, 

i.e. we allow at each point different measuring times, 
related only by the constraint (3). In this case we search 

the minimum of the total time 

Tabs.= ~ t + ~ t, (11) 
p b 

considered as a function of all the t values. We arrive at 

1,( 
t =  kv/Y, with k -  4 n f x / ~ +  f (12) 

p b 

valid for all the points in both ranges. For the optimum 
total time we have now 

Tabs.----'~/2 v/Y+ ~ v/Y . (13) 

3. Discussion 

As to the selection between the different methods, there 
is confusion in the literature. Klug & Alexander (1974) 
show no preference, and Cullity (1956) expressly re- 
commends the method which will be shown to be the 
least suitable. 

In order to choose between the three methods, the 
following points must be taken into account. 

(1) The total time. It is important to note that the 
ratios of the optimum total times obtained for the three 
cases are independent of the vertical (I0 or the 
horizontal (0) scale used, and that they are also 
independent of a/. 

By using the well-known formulae 

f2 <_f-~ and 1/f <_ ( l / f ) ,  (14) 

valid for any positive function f, where the bars denote 
mean values, it is easy to show that 

Tabs. < Tc.t. < Tc.c.. (15) 

It is not so easy to give the ratios of our optimum 
times in the general case. We may rather evaluate them 
for a convenient peak form, for which the integrals are 
elementary. Of the commonly used peak forms, the 
most satisfactory are the 'square peak', for which all 
these optimum times are equal, and the 'triangular 
peak' (Fig. 1), for which we give in Table 1 the calcu- 
lated time ratios. 

square peak triangular peak 

. . . . . . . . . .  . . . . . .  

Fig. 1. Two commonly used peak forms. 
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Table 1. Time ratios for the triangularpeak 4. Conclusions 

( O  - A)/A Tc.,./rabs. rc.c./Tabs. 

0 1 1 
1 1.005 1.05 

10 1.05 1.60 
100 1.10 3.07 

1000 1.12 4.92 
B - - A  

c~ 1.125 ~ =0.751n - -  
A 

(2) Calculations required. In this respect the 
constant-time method is the best, as only the intensity 
integrals appear, which must be calculated anyway for 
finding I. Next is the absolute optimization, where in 
each range one integral, that of v/-Y, is needed. The 
worst is the constant-count method, where in each 
range two integrals, those of y2 and of l/Y, must be 
calculated. 

(3) Experimental feasibility. We have also to keep in 
mind that the constant-time and the constant-count 
methods are equally easy to perform, whereas the 
measurements corresponding to the absolute optimiza- 
tion would be rather laborious. 

The constant-time should always be preferred to the 
constant-count method, as the latter is in no respect 
better than the former. The selection between the 
constant time and the absolute methods is somewhat 
arbitrary, as in some respects one or the other is 
favoured. For most practical cases, however, we would 
use the constant-time method. 

I would like to express my gratitude to Dr E. Kr6n, 
and to my father, Dr P. Szab6, for their valuable 
comments and criticism. I am indebted to L. Fuentes- 
Cobas, MSc, for his interest in my work. 
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To illustrate the efficiency of a systematic method of derivation of subgroups [Billiet, Bull. Soc. Fr. Miniral. 
Cristallogr. (1973), 96, 327-334], the authors have tabulated the complete list of standard settings of every 
subgroup of any two-dimensional space group. 

In other papers (Billiet, 1973; BUffet, Sayari & Zarrouk, 
1978), we have given much information, concerning a 
systematic method of deriving subgroups (which are 

* Permanent address: Chimie et Sym&rie. Laboratoire de Chimie 
Inorganique Mol~culaire, 6 avenue le Gorgeu, 29283 Brest, France. 

space groups again) of space groups. This method has 
enabled us to find all the subgroups of the triclinic and 
monoclinic space groups (Sayari & Billiet, 1977). 

Here a new example of the efficiency of this method 
is given. We have listed the subgroups and the changes 
of standard setting of the two-dimensional space 


